The Aller AND

	CONTRACT.	
Instructor: Dr. Rola Alseidi	Philadelphia University	Academic Year: 2021/2022.
		Semester: Second.
	Faculty/College of Science	Date: $22/5/2022$.
	Department of Basic Science and Mathematics	Course : LAVC
	midterm exam	Duration of Exam: 75 minutes.
Namo		

Name:

• The exam consists of **4 pages**. Make sure you have all of them.

1. (10 points) Let

$$A = \begin{bmatrix} 1 & 4 \\ -2 & 3 \\ 1 & -2 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} C = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

Find (if possible)

(a) (3 points) AB.

(b) (2 points) $A^T + B$.

(c) (3 points) C^{-1} .

(d) (2 points) det(C).

2. (3 points) Let
$$\begin{bmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Find
(a) B^2

(b) $(2B)^{-1}$

3. (3 points) For the system of equations

$$\begin{array}{rcl} x + ky &=& 1\\ 3x + 5y &=& 0, \end{array}$$

find the value of k such that .

(a) the system is consistent.

(b) the system has no solution.

4. (3 points) Solve the following system by Cramer's Rule

$$\begin{array}{rcl} x+y &=& -2\\ 2x+y &=& -1 \end{array}$$

5. (5 points) Circle True or False. Read each statement carefully before answering.

(a) True	False	Let A be an $n \times n$ matrix, then the linear system $Ax = 0$ has the trivial solution					
		if and only if A is invertible.					
(b) True	False	The matrix $A = \begin{bmatrix} 1 & 4 & 5 \\ 4 & 1 & 0 \\ 5 & 0 & 7 \end{bmatrix}$ is symmetric.					
(c) True	False	The sum of two invertible matrices of the same size must be invertible.					
(d) True	False	If $A^2 = 0$, then $A = 0$ for any square matrix A.					
(e) True	False	If A and B and C are square invertible matrices, and $ABC = I$, then $B^{-1} = (AC)^{-1}$					

6. (6 points) Circle the correct answer

(a) If
$$B = \begin{bmatrix} 2 & 1 & 0 \\ -2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, then the minor $M_{23} =$
A. -3 B. 3 C. 6 D. -6 E. 4 F. None

(b) If

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
then $adj(A) =$
A. $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
B. $\begin{bmatrix} -2 & 0 & 0 \\ 0 & 6 & 3 \\ 0 & 0 & 3 \end{bmatrix}$
C. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
D. $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
E. $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 3 \\ 0 & 0 & -3 \end{bmatrix}$
F. None

(c)	Let A and B	be 2×2 mat	rices with $det(A)$	$=2,\det(B)=5.$	Find $\det(2A)$	$^{-1}(B^2)^T) =$
	A. 5	B. 10	C. 100	D. 50	E. 32	F. None

(d) If
$$A = \begin{bmatrix} -2 & 6 & 1 \\ -3 & 4 & 5 \\ 4 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 3 & 2 \\ 1 & 2 & 4 \end{bmatrix}$ then $tr(2A + B) =$
A. 5 B. 10 C. 15 D. 19 E. 3 F. None

(e) If A is 6×4 matrix and B is an $m \times n$ matrix such that $B^T A^T$ is a 2×6 matrix, then = A. m = 4, n = 6 B. m = 6, n = 4 C. m = 2, n = 6 D. m = 4, n = 2E. m = 6, n = 3 F. None

(f) Let A and B be 2×2 matrices with det(adj(A)) = -8, det(B) = 4. Find det(AB) = A. -32 B. 8 C. -8 D. 32 E. 4 F. None