II

Instructor: Dr. Rola Alseidi	Philadelphia University	Academic Year: 2021/2022. Semester: Second.
	Faculty/College of Science	Date: 22/5/2022.
	Department of Basic Science and Mathematics	Course : LAVC
	midterm exam	Duration of Exam: 75 minutes.
Name:		

- The exam consists of 4 pages. Make sure you have all of them.

1. (10 points) Let

$$
A=\left[\begin{array}{cc}
1 & 4 \\
-2 & 3 \\
1 & -2
\end{array}\right], B=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & -1
\end{array}\right] \quad C=\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]
$$

Find (if possible)
(a) (3 points) $A B$.
(b) $(2$ points $) A^{T}+B$.
(c) (3 points) C^{-1}.
(d) (2 points) $\operatorname{det}(C)$.
2. (3 points) Let $\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$. Find
(a) B^{2}
(b) $(2 B)^{-1}$
3. (3 points) For the system of equations

$$
\begin{array}{r}
x+k y=1 \\
3 x+5 y=0
\end{array}
$$

find the value of k such that .
(a) the system is consistent.
(b) the system has no solution.
4. (3 points) Solve the following system by Cramer's Rule

$$
\begin{aligned}
x+y & =-2 \\
2 x+y & =-1
\end{aligned}
$$

5. (5 points) Circle True or False. Read each statement carefully before answering.
(a) True False Let A be an $n \times n$ matrix, then the linear system $A x=0$ has the trivial solution if and only if A is invertible.
(b) True False The matrix $A=\left[\begin{array}{lll}1 & 4 & 5 \\ 4 & 1 & 0 \\ 5 & 0 & 7\end{array}\right]$ is symmetric.
(c) True False The sum of two invertible matrices of the same size must be invertible.
(d) True False If $A^{2}=0$, then $A=0$ for any square matrix A.
(e) True False If A and B and C are square invertible matrices, and $A B C=I$, then $B^{-1}=$ $(A C)^{-1}$
6. (6 points) Circle the correct answer
(a) If $B=\left[\begin{array}{ccc}2 & 1 & 0 \\ -2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$, then the minor $M_{23}=$
A. -3
B. 3
C. 6
D. -6
E. 4
F. None
(b) If

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

then $\operatorname{adj}(A)=$
A. $\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3\end{array}\right]$
B. $\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 6 & 3 \\ 0 & 0 & 3\end{array}\right]$
C. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
D. $\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3\end{array}\right]$
E. $\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 6 & 3 \\ 0 & 0 & -3\end{array}\right]$
F. None
(c) Let A and B be 2×2 matrices with $\operatorname{det}(A)=2, \operatorname{det}(B)=5$. Find $\operatorname{det}\left(2 A^{-1}\left(B^{2}\right)^{T}\right)=$
A. 5
B. 10
C. 100
D. 50
E. 32
F. None
(d) If $A=\left[\begin{array}{ccc}-2 & 6 & 1 \\ -3 & 4 & 5 \\ 4 & 2 & 3\end{array}\right], B=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 3 & 2 \\ 1 & 2 & 4\end{array}\right]$ then $\operatorname{tr}(2 A+B)=$
A. 5
B. 10
C. 15
D. 19
E. 3
F. None
(e) If A is 6×4 matrix and B is an $m \times n$ matrix such that $B^{T} A^{T}$ is a 2×6 matrix, then $=$
A. $m=4, n=6$
B. $m=6, n=4$
C. $m=2, n=6$
D. $m=4, n=2$
E. $m=6, n=3$
F. None
(f) Let A and B be 2×2 matrices with $\operatorname{det}(\operatorname{adj}(A))=-8, \operatorname{det}(B)=4$. Find $\operatorname{det}(A B)=$
A. -32
B. 8
C. -8
D. 32
E. 4
F. None

